LobeChat
Ctrl K
Back to Discovery
Meta

Meta Llama 3 8B

meta-llama-3-8b-instruct
A versatile 8-billion parameter model optimized for dialogue and text generation tasks.
8K

Providers Supporting This Model

Meta
CloudflareCloudflare
WorkersAIWorkersAI
Metameta-llama-3-8b-instruct
Maximum Context Length
--
Maximum Output Length
--
Input Price
--
Output Price
--
GithubGithub
Metameta-llama-3-8b-instruct
Maximum Context Length
8K
Maximum Output Length
4K
Input Price
--
Output Price
--
Higress
Metameta-llama-3-8b-instruct
Maximum Context Length
8K
Maximum Output Length
4K
Input Price
--
Output Price
--

Model Parameters

Randomness
temperature

This setting affects the diversity of the model's responses. Lower values lead to more predictable and typical responses, while higher values encourage more diverse and less common responses. When set to 0, the model always gives the same response to a given input. View Documentation

Type
FLOAT
Default Value
1.00
Range
0.00 ~ 2.00
Nucleus Sampling
top_p

This setting limits the model's selection to a certain proportion of the most likely vocabulary: only selecting those top words whose cumulative probability reaches P. Lower values make the model's responses more predictable, while the default setting allows the model to choose from the entire range of vocabulary. View Documentation

Type
FLOAT
Default Value
1.00
Range
0.00 ~ 1.00
Topic Freshness
presence_penalty

This setting aims to control the reuse of vocabulary based on its frequency in the input. It attempts to use less of those words that appear more frequently in the input, with usage frequency proportional to occurrence frequency. Vocabulary penalties increase with frequency of occurrence. Negative values encourage vocabulary reuse. View Documentation

Type
FLOAT
Default Value
0.00
Range
-2.00 ~ 2.00
Frequency Penalty
frequency_penalty

This setting adjusts the frequency at which the model reuses specific vocabulary that has already appeared in the input. Higher values reduce the likelihood of such repetition, while negative values have the opposite effect. Vocabulary penalties do not increase with frequency of occurrence. Negative values encourage vocabulary reuse. View Documentation

Type
FLOAT
Default Value
0.00
Range
-2.00 ~ 2.00
Single Response Limit
max_tokens

This setting defines the maximum length that the model can generate in a single response. Setting a higher value allows the model to produce longer replies, while a lower value restricts the length of the response, making it more concise. Adjusting this value appropriately based on different application scenarios can help achieve the desired response length and level of detail. View Documentation

Type
INT
Default Value
--
Range
0 ~ 4K

Related Models

OpenAI

OpenAI o1

o1
Focused on advanced reasoning and solving complex problems, including mathematical and scientific tasks. It is particularly well-suited for applications that require deep contextual understanding and agent workflow.
200K
OpenAI

OpenAI o1-mini

o1-mini
o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023.
128K
OpenAI

OpenAI o1-preview

o1-preview
o1 is OpenAI's new reasoning model, suitable for complex tasks that require extensive general knowledge. This model features a 128K context and has a knowledge cutoff date of October 2023.
128K
OpenAI

OpenAI GPT-4o mini

gpt-4o-mini
GPT-4o mini is the latest model released by OpenAI after GPT-4 Omni, supporting both image and text input while outputting text. As their most advanced small model, it is significantly cheaper than other recent cutting-edge models, costing over 60% less than GPT-3.5 Turbo. It maintains state-of-the-art intelligence while offering remarkable cost-effectiveness. GPT-4o mini scored 82% on the MMLU test and currently ranks higher than GPT-4 in chat preferences.
128K
OpenAI

OpenAI GPT-4o

gpt-4o
ChatGPT-4o is a dynamic model that updates in real-time to stay current with the latest version. It combines powerful language understanding and generation capabilities, making it suitable for large-scale applications, including customer service, education, and technical support.
128K